Baxter’s Inequality and Sieve Bootstrap for Random Fields

نویسندگان

  • Marco Meyer
  • Dimitris Politis
چکیده

The concept of the autoregressive (AR) sieve bootstrap is investigated for the case of spatial processes in Z. This procedure fits AR models of increasing order to the given data and, via resampling of the residuals, generates bootstrap replicates of the sample. The paper explores the range of validity of this resampling procedure and provides a general check criterion which allows to decide whether the AR sieve bootstrap asymptotically works for a specific statistic of interest or not. The criterion may be applied to a large class of stationary spatial processes. As another major contribution of this paper, a weighted Baxter-inequality for spatial processes is provided. This result yields a rate of convergence for the finite predictor coefficients, i.e. the coefficients of finite-order AR model fits, towards the autoregressive coefficients which are inherent to the underlying process under mild conditions. The developed check criterion is applied to some particularly interesting statistics like sample autocorrelations and standardized sample variograms. A simulation study shows that the procedure performs very well compared to normal approximations as well as block bootstrap methods in finite samples. [Joint work with Carsten Jentsch and Jens-Peter Kreiss.] Host: Dimitris Politis Tuesday, February 9, 2016 1:00 PM AP&M 7421 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Principle of the Large Sieve

We describe a very general abstract form of sieve based on a large-sieve inequality which generalizes both the classical sieve inequality of Montgomery (and its higher-dimensional variants), and our recent sieve for Frobenius over function fields. The general framework suggests new applications. We give some first results on the number of prime divisors of “most” elements of an elliptic divisib...

متن کامل

Baxter’s Inequality for Triangular Arrays

A central problem in time series analysis is prediction of a future observation. The theory of optimal linear prediction has been well understood since the seminal work of A. Kolmogorov and N. Wiener during World War II. A simplifying assumption is to assume that one-step-ahead prediction is carried out based on observing the infinite past of the time series. In practice, however, only a finite...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Valid Resampling of Higher Order Statistics Using Linear Process Bootstrap and Autoregressive Sieve Bootstrap

Abstract. In this paper we show that the linear process bootstrap (LPB) and the autoregressive sieve bootstrap (AR sieve) fail in general for statistics whose large-sample distribution depends on higher order features of the dependence structure rather than just on autocovariances. We discuss why this is still the case under linearity if it does not come along with causality and invertibility w...

متن کامل

Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes

In this paper we will investigate the consequences of applying the sieve bootstrap under regularity conditions that are sufficiently general to encompass both fractionally integrated and non-invertible processes. The sieve bootstrap is obtained by approximating the data generating process by an autoregression whose order h increases with the sample size T . The sieve bootstrap may be particular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015